Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Nucleic Acids ; 35(1): 102090, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38187140

RESUMO

Pancreatic neuroendocrine tumors (PanNETs) comprise a heterogeneous group of tumors with growing incidence. Recent molecular analyses provided a precise picture of their genomic and epigenomic landscape. Splicing dysregulation is increasingly regarded as a novel cancer hallmark influencing key tumor features. We have previously demonstrated that splicing machinery is markedly dysregulated in PanNETs. Here, we aimed to elucidate the molecular and functional implications of CUGBP ELAV-like family member 4 (CELF4), one of the most altered splicing factors in PanNETs. CELF4 expression was determined in 20 PanNETs, comparing tumor and non-tumoral adjacent tissue. An RNA sequencing (RNA-seq) dataset was analyzed to explore CELF4-linked interrelations among clinical features, gene expression, and splicing events. Two PanNET cell lines were employed to assess CELF4 function in vitro and in vivo. PanNETs display markedly upregulated CELF4 expression, which is closely associated with malignancy features, altered expression of key tumor players, and distinct splicing event profiles. Modulation of CELF4 influenced proliferation in vitro and reduced in vivo xenograft tumor growth. Interestingly, functional assays and RNA-seq analysis revealed that CELF4 silencing altered mTOR signaling pathway, enhancing the effect of everolimus. We demonstrate that CELF4 is dysregulated in PanNETs, where it influences tumor development and aggressiveness, likely by modulating the mTOR pathway, suggesting its potential as therapeutic target.

2.
J Transl Med ; 21(1): 879, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049848

RESUMO

BACKGROUND: Lung neuroendocrine neoplasms (LungNENs) comprise a heterogeneous group of tumors ranging from indolent lesions with good prognosis to highly aggressive cancers. Carcinoids are the rarest LungNENs, display low to intermediate malignancy and may be surgically managed, but show resistance to radiotherapy/chemotherapy in case of metastasis. Molecular profiling is providing new information to understand lung carcinoids, but its clinical value is still limited. Altered alternative splicing is emerging as a novel cancer hallmark unveiling a highly informative layer. METHODS: We primarily examined the status of the splicing machinery in lung carcinoids, by assessing the expression profile of the core spliceosome components and selected splicing factors in a cohort of 25 carcinoids using a microfluidic array. Results were validated in an external set of 51 samples. Dysregulation of splicing variants was further explored in silico in a separate set of 18 atypical carcinoids. Selected altered factors were tested by immunohistochemistry, their associations with clinical features were assessed and their putative functional roles were evaluated in vitro in two lung carcinoid-derived cell lines. RESULTS: The expression profile of the splicing machinery was profoundly dysregulated. Clustering and classification analyses highlighted five splicing factors: NOVA1, SRSF1, SRSF10, SRSF9 and PRPF8. Anatomopathological analysis showed protein differences in the presence of NOVA1, PRPF8 and SRSF10 in tumor versus non-tumor tissue. Expression levels of each of these factors were differentially related to distinct number and profiles of splicing events, and were associated to both common and disparate functional pathways. Accordingly, modulating the expression of NOVA1, PRPF8 and SRSF10 in vitro predictably influenced cell proliferation and colony formation, supporting their functional relevance and potential as actionable targets. CONCLUSIONS: These results provide primary evidence for dysregulation of the splicing machinery in lung carcinoids and suggest a plausible functional role and therapeutic targetability of NOVA1, PRPF8 and SRSF10.


Assuntos
Tumor Carcinoide , Neoplasias Pulmonares , Humanos , Tumor Carcinoide/genética , Tumor Carcinoide/metabolismo , Tumor Carcinoide/patologia , Neoplasias Pulmonares/patologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Processamento Alternativo/genética , Fatores de Processamento de RNA/genética , Biomarcadores/metabolismo , Biologia , Pulmão/patologia , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Antígeno Neuro-Oncológico Ventral
3.
J Exp Clin Cancer Res ; 42(1): 282, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37880792

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal cancers worldwide, mainly due to its late diagnosis and lack of effective therapies, translating into a low 5-year 12% survival rate, despite extensive clinical efforts to improve outcomes. International cooperative studies have provided informative multiomic landscapes of PDAC, but translation of these discoveries into clinical advances are lagging. Likewise, early diagnosis biomarkers and new therapeutic tools are sorely needed to tackle this cancer. The study of poorly explored molecular processes, such as splicing, can provide new tools in this regard. Alternative splicing of pre-RNA allows the generation of multiple RNA variants from a single gene and thereby contributes to fundamental biological processes by finely tuning gene expression. However, alterations in alternative splicing are linked to many diseases, and particularly to cancer, where it can contribute to tumor initiation, progression, metastasis and drug resistance. Splicing defects are increasingly being associated with PDAC, including both mutations or dysregulation of components of the splicing machinery and associated factors, and altered expression of specific relevant gene variants. Such disruptions can be a key element enhancing pancreatic tumor progression or metastasis, while they can also provide suitable tools to identify potential candidate biomarkers and discover new actionable targets. In this review, we aimed to summarize the current information about dysregulation of splicing-related elements and aberrant splicing isoforms in PDAC, and to describe their relationship with the development, progression and/or aggressiveness of this dismal cancer, as well as their potential as therapeutic tools and targets.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Biomarcadores , RNA , Neoplasias Pancreáticas
4.
Rev Endocr Metab Disord ; 24(2): 267-282, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36418657

RESUMO

Neuroendocrine neoplasms (NENs) comprise a highly heterogeneous group of tumors arising from the diffuse neuroendocrine system. NENs mainly originate in gastrointestinal, pancreatic, and pulmonary tissues, and despite being rare, show rising incidence. The molecular mechanisms underlying NEN development are still poorly understood, although recent studies are unveiling their genomic, epigenomic and transcriptomic landscapes. RNA was originally considered as an intermediary between DNA and protein. Today, compelling evidence underscores the regulatory relevance of RNA processing, while new RNA molecules emerge with key functional roles in core cell processes. Indeed, correct functioning of the interrelated complementary processes comprising RNA biology, its processing, transport, and surveillance, is essential to ensure adequate cell homeostasis, and its misfunction is related to cancer at multiple levels. This review is focused on the dysregulation of RNA biology in NENs. In particular, we survey alterations in the splicing process and available information implicating the main RNA species and processes in NENs pathology, including their role as biomarkers, and their functionality and targetability. Understanding how NENs precisely (mis)behave requires a profound knowledge at every layer of their heterogeneity, to help improve NEN management. RNA biology provides a wide spectrum of previously unexplored processes and molecules that open new avenues for NEN detection, classification and treatment. The current molecular biology era is rapidly evolving to facilitate a detailed comprehension of cancer biology and is enabling the arrival of personalized, predictive and precision medicine to rare tumors like NENs.


Assuntos
Tumores Neuroendócrinos , RNA , Humanos , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...